Vibrating RF MEMS for Low Power Wireless Communications
نویسنده
چکیده
Micromechanical communication circuits fabricated via IC-compatible MEMS technologies and capable of low-loss filtering, mixing, switching, and frequency generation, are described with the intent to miniaturize wireless transceivers. Possible transceiver front-end architectures are then presented that use these micromechanical circuits in large quantities to substantially reduce power consumption. Technologies that integrate MEMS and transistor circuits into single-chip systems are then reviewed with an eye towards the possibility of single-chip communication transceivers.
منابع مشابه
Vibrating RF MEMS Overview: Applications to Wireless Communications
Micromechanical RF filters and reference oscillators based on recently demonstrated vibrating on-chip micromechanical resonators with Q’s >10,000 at 1.5 GHz, are described as an attractive solution to the increasing count of RF components (e.g., filters) expected to be needed by future multi-band wireless devices. With Q’s this high in on-chip abundance, such devices might also enable a paradig...
متن کاملIntegrated Micromechanical Circuits Fueled By Vibrating RF MEMS Technology
Having now produced devices with sufficient Q, thermal stability, aging stability, and manufacturability, vibrating RF MEMS technology is already finding its way into next generation timing and wireless applications. At this juncture, the technology is now poised to take its next logical steps: higher levels of circuit complexity and integration. In particular, as vibrating RF MEMS devices are ...
متن کاملVibrating RF MEMS for Low Power Communications
Micromechanical communication circuits fabricated via IC-compatible MEMS technologies and capable of low-loss filtering, mixing, switching, and frequency generation, are described with the intent to miniaturize wireless transceivers. Possible transceiver front-end architectures are then presented that use these micromechanical circuits in large quantities to substantially reduce power consumpti...
متن کاملHigh Power (>1W) Application RF MEMS Lifetime Performance Evaluation
1.0 INTRODUCTION Solid-state RF devices are currently utilized in a wide array of application areas, including satellite communications systems, wireless communications systems, automotive radars, and defense applications. Currently, PIN diode or Field Effect Transistor (FET)-based switches are utilized for their high switching speeds, high power handling, low drive voltage, low cost, and techn...
متن کاملMEMS Technologies and Devices for Single-Chip RF Front-Ends
Micromechanical (or “μmechanical”) components for communication applications fabricated via IC-compatible MEMS technologies and capable of low-loss filtering, mixing, switching, and frequency generation, are described with the intent to not only miniaturize and lower the parts counts of wireless front-ends via higher levels of integration, but also to eventually raise robustness (against interf...
متن کامل